Thursday, March 5, 2020
Corresponding Angles
Corresponding Angles When two Parallel lines are crossed by another line known as transverse, then the angles which occupy the same position at each intersection or the angles in the matching corners are known as Corresponding angles This can be better understood by the below figure in which angle 1 and angle 2 are corresponding angles. . Example 1: Find out the angle 1 and 2 indicated in figure 2, when angle 3 is equal to 60 degrees. Solution 1: Given, Angle 3 = 60 degrees We know that, Angle 2 + Angle 3 = 180 degrees Therefore Angle 2 + 60 = 180 (Linear pair) Subtract 60 from both sides, Angle 2 + 60 60 = 180 60 So Angle 2 = 120 degrees. Since corresponding angles are equal, Therefore, Angle 1 = 120 degrees. Example2: Find out the angle 1 and 2 indicated in above figure 3, when the value of angle 3 is equal to 120 degrees. Solution 2: Given, The value of Angle 3 = 120 degrees We know that, Angle 2 + Angle 3 = 180 degrees Therefore Angle 2 + 120 = 180 (Linear pair) Subtract 120 from both sides, Angle 2 + 120 120 = 180 120 So Angle 2 = 60 degrees. Since corresponding angles are equal, Therefore, Angle 1 = 60 degrees.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.